Page 17 - Operaciones con matrices
P. 17

Sumar a una fila el múltiplo de otra



            Esta  operación  consiste  en  multiplicar  cada  elemento  de  la  fila  i-


            ésima  por  un  número  real  distinto  de  cero,  y  sumarlos  a  los


            elementos  correspondientes  de  la  fila  j-ésima.  Se  denota  como


                    f
                 f  +
            ⎯⎯⎯→, donde                    .
                  i
                    j
                   Por ejemplo, se multiplica cada elemento de la segunda fila por


              1
            − , y se suman a los elementos correspondientes de la primera fila:
              2


                                            1 2       −  1 f +  f    −  1   0 
                                                       2  2  1    ⎯⎯⎯⎯ →  2   
                                            3   4                    3     4   







                   Fundamentales


            Las  operaciones  fundamentales  con  matrices  son:  trasposición,


            adición/sustracción,  escalamiento,  producto  interno,  multiplicación  e



            inversión.



                          Trasposición


            Trasponer una matriz consiste en intercambias filas por columnas;


            de esta forma, las filas de A           T n m  son las columnas de A          m n  en el mismo
                                                     
                                                                                            
            orden:



                                                             13
   12   13   14   15   16   17   18   19   20   21   22